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ABSTRACT

Multi-camera human tracking in crowded environments remains a challenging problem due to
occlusions, illumination changes, and appearance variations across different camera views. This
paper presents a novel framework that leverages adaptive feature fusion and temporal consistency
constraints to improve tracking performance in complex environments. Our approach combines
appearance, motion, and spatial-temporal features through a dynamic weighting mechanism that
adapts to the complexity of the scene. We introduce a Confidence-Aware Association (CAA)
algorithm that explicitly models tracking uncertainty and uses it to guide the data association process.
Extensive experiments on three public datasets demonstrate that our method achieves comparable
or superior performance to state-of-the-art approaches, with notable improvements in crowded
scenes with frequent occlusions. The proposed framework achieves a MOTA score of 76.8% on
the WILDTRACK dataset and 68.3% on the CAMPUS dataset, representing a 2.6% and 3.1%
improvement over baseline methods, respectively. Our ablation studies highlight the effectiveness of
the adaptive feature fusion mechanism and temporal consistency constraints in improving tracking
robustness and accuracy.

Keywords Multi-camera tracking · pedestrian tracking · feature fusion · temporal consistency · multi-target tracking ·
computer vision

1 Introduction

Multi-camera human tracking is essential for various applications such as surveillance, sports analytics, crowd moni-
toring, and behavior analysis. By deploying multiple cameras with overlapping fields of view, tracking systems can
overcome challenges like occlusions, illumination variations, and limited field of view that plague single-camera systems.
However, effective integration of information from multiple cameras remains a significant challenge, particularly in
crowded environments where occlusions and identity switches are common.

Traditional approaches to multi-camera tracking typically rely on camera calibration to establish geometric correspon-
dence across views, followed by appearance matching to associate detections across cameras. Recent deep learning
methods have shown promising results by learning discriminative appearance features directly from data. However,
these approaches often struggle in crowded scenes where people with similar appearances are in close proximity, leading
to identity switches and fragmented trajectories.

In this paper, we address these challenges by proposing OmniTrack, a framework that adaptively fuses multiple feature
types based on scene conditions. Unlike existing methods that use fixed weighting schemes for feature fusion, our
approach dynamically adjusts the importance of appearance, motion, and spatial-temporal features based on their
reliability in the current context. This adaptive fusion strategy is particularly effective in challenging scenarios where
certain features may be unreliable due to occlusions, lighting changes, or similar appearances.

The key contributions of our work are as follows:



1. We propose an adaptive feature fusion mechanism that dynamically adjusts feature weights based on their
estimated reliability in the current scene context.

2. We introduce a Confidence-Aware Association (CAA) algorithm that explicitly models tracking uncertainty
and uses it to guide the data association process.

3. We develop temporal consistency constraints that exploit the smooth dynamics of human motion to improve
tracking continuity and reduce identity switches.

4. We conduct extensive experiments on three public datasets, demonstrating that our approach achieves competi-
tive results compared to state-of-the-art methods, with particular improvements in crowded scenes.

The rest of the paper is organized as follows: Section 2 discusses related work in multi-camera tracking. Section 3
presents our proposed OmniTrack framework in detail. Section 4 describes our experimental setup and results. Section
5 provides ablation studies to analyze the contribution of each component. Finally, Section 7 concludes the paper and
discusses future directions.

2 Related Work

2.1 Single-Camera Multi-Target Tracking

Single-camera multi-target tracking has seen significant advances with the emergence of tracking-by-detection paradigms
[1, 2]. These methods typically involve detection, feature extraction, and data association steps. SORT [1] uses Kalman
filtering for motion prediction and the Hungarian algorithm for data association, achieving real-time performance.
DeepSORT [2] extends this approach by incorporating appearance features from deep neural networks to improve
identity association. More recent approaches like JDE [3] and FairMOT [4] propose joint detection and embedding
frameworks that simultaneously learn object detection and appearance feature extraction in a unified network.

2.2 Multi-Camera Tracking

Multi-camera tracking methods can be broadly categorized into two groups: centralized approaches and decentralized
approaches. Centralized approaches [5, 6] first perform tracking in each camera view independently and then associate
trajectories across cameras based on appearance and spatio-temporal cues. Decentralized approaches [7, 8] directly
establish correspondences between detections from different camera views and perform tracking in a unified space.

Xu et al. [5] proposed a weighted triplet loss to learn discriminative appearance features across different camera views.
Chen et al. [6] introduced a cross-view adaptation approach that aligns feature distributions across cameras. Hou et al.
[7] developed a multi-view tracker that fuses appearance and geometric features in a unified framework. More recently,
Nguyen et al. [8] proposed a graph-based spatio-temporal approach that models both spatial and temporal dependencies
for multi-camera tracking.

2.3 Feature Fusion for Tracking

Feature fusion has been widely explored in the tracking literature to combine complementary information from different
sources. Early methods used fixed weighting schemes [9] or heuristic rules [10] to combine features. Recent approaches
leverage attention mechanisms [11] or adaptive weighting [12] to dynamically adjust feature importance.

Kuo et al. [9] combined appearance and motion features using a fixed weighting scheme. Chen et al. [10] proposed a
cascade of features with heuristic rules for feature selection. Zhu et al. [11] introduced a distractor-aware feature fusion
approach that uses attention to focus on discriminative features. Lu et al. [12] developed an adaptive feature fusion
method that adjusts feature weights based on their reliability.

Our work extends these approaches by introducing a confidence-aware feature fusion mechanism that dynamically
adjusts the importance of different features based on their estimated reliability in the current context. Unlike previous
methods that rely on predefined rules or fixed attention mechanisms, our approach learns to adapt feature weights based
on scene complexity, occlusion levels, and feature quality.
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3 Method

3.1 Overview

Our OmniTrack framework consists of four main components: (1) Multi-view detection and feature extraction, (2)
Adaptive feature fusion, (3) Confidence-aware data association, and (4) Trajectory refinement with temporal consistency
constraints. Figure 1 provides an overview of our approach.

The input to our system is a set of synchronized video streams from multiple cameras with overlapping fields of view.
For each frame, we detect people in each camera view using a pre-trained detector and extract appearance, motion, and
spatial features. We then project the detections to a common ground plane using camera calibration information and
perform feature fusion with our adaptive weighting mechanism. Next, we associate detections across time using our
confidence-aware association algorithm. Finally, we refine the trajectories using temporal consistency constraints to
improve tracking continuity.

3.2 Multi-View Detection and Feature Extraction

For each camera view c ∈ {1, 2, ..., C} and frame t, we detect people using Faster R-CNN [13] with a ResNet-50
[14] backbone. Each detection dic,t consists of a bounding box bic,t = [x, y, w, h], a confidence score sic,t, and the
feet position pic,t = [xf , yf ] in the image plane. We project the feet position to the global ground plane using the
homography matrix Hc for camera c:

P i
t = Hc · [xf , yf , 1]

T (1)

where P i
t = [X,Y, 1]T represents the position in the global coordinate system.

For each detection, we extract the following features:

1. Appearance features: We use a ResNet-50 model pre-trained on a person re-identification dataset to extract a
2048-dimensional feature vector fa

c,t,i from the detection crop.
2. Motion features: We compute the velocity and acceleration of each detection in the ground plane to form a

4-dimensional motion feature vector fm
t,i.

3. Spatial-temporal features: We encode the position and time information in a 3-dimensional vector fs
t,i =

[X,Y, t].

To handle the varying reliability of detections from different camera views, we compute a view-specific confidence
score αc,t,i for each detection:

αc,t,i = sic,t · e−λ·oic,t (2)

where sic,t is the detection confidence, oic,t is the occlusion ratio estimated based on depth ordering, and λ is a
hyperparameter controlling the influence of occlusion.

3.3 Adaptive Feature Fusion

Unlike existing methods that use fixed weights for feature fusion, we propose an adaptive fusion mechanism that
dynamically adjusts feature weights based on their estimated reliability in the current context. Our fusion approach
consists of two steps: (1) Cross-view feature fusion and (2) Multi-feature adaptive fusion.

3.3.1 Cross-View Feature Fusion

For a person detected in multiple camera views, we aggregate the appearance features across views using a confidence-
weighted average:

f̂a
t,i =

∑C
c=1 αc,t,i · fa

c,t,i∑C
c=1 αc,t,i

(3)

where f̂a
t,i is the fused appearance feature for person i at time t.
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3.3.2 Multi-Feature Adaptive Fusion

We combine appearance, motion, and spatial-temporal features using an adaptive weighting mechanism:

ft,i = wa
t,i · f̂a

t,i + wm
t,i · fm

t,i + ws
t,i · fs

t,i (4)

where wa
t,i, w

m
t,i, and ws

t,i are the adaptive weights for appearance, motion, and spatial-temporal features, respectively.

The adaptive weights are computed using a small neural network that takes as input the feature quality indicators and
scene complexity metrics:

[wa
t,i, w

m
t,i, w

s
t,i] = softmax(gθ(qat,i, q

m
t,i, q

s
t,i, ηt)) (5)

where gθ is a two-layer perceptron with parameters θ, qat,i, q
m
t,i, and qst,i are quality indicators for each feature type, and

ηt is a scene complexity metric that includes crowd density and overall occlusion level.

The feature quality indicators are defined as follows:

qat,i = maxc∈{1,...,C}αc,t,i (6)

qmt,i = e−β·var(vt−k:t,i) (7)

qst,i =
1

1 + γ · dt,i
(8)

where var(vt−k:t,i) is the variance of velocity over the past k frames, dt,i is the distance to the nearest detection, and β
and γ are hyperparameters.

3.4 Confidence-Aware Association

We formulate the data association problem as a bipartite matching problem between detections in the current frame and
existing trajectories. Our key contribution is the Confidence-Aware Association (CAA) algorithm that explicitly models
tracking uncertainty and uses it to guide the association process.

For each trajectory Tj and detection di in the current frame, we compute an association cost:

C(Tj , di) = − log(p(di|Tj)) (9)

where p(di|Tj) is the probability that detection di belongs to trajectory Tj .

We model this probability as a mixture of Gaussians:

p(di|Tj) = πa · pa(di|Tj) + πm · pm(di|Tj) + πs · ps(di|Tj) (10)

where pa, pm, and ps are the probabilities based on appearance, motion, and spatial-temporal features, respectively, and
πa, πm, and πs are the corresponding mixture weights.

The appearance probability is computed using the cosine similarity between feature vectors:

pa(di|Tj) =
1

Za
exp

(
⟨ft,i, ft−1,j⟩

∥ft,i∥ · ∥ft−1,j∥ · σa

)
(11)

where Za is a normalization constant and σa is a temperature parameter.

The motion probability is computed using a Kalman filter prediction:

pm(di|Tj) = N (Pt,i; P̂t|t−1,j ,Σt|t−1,j) (12)

where P̂t|t−1,j is the predicted position of trajectory Tj at time t and Σt|t−1,j is the corresponding covariance matrix.
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The spatial-temporal probability is based on the proximity in the ground plane:

ps(di|Tj) = exp

(
−∥Pt,i − Pt−1,j∥2

2σs

)
(13)

where σs is a scaling parameter.

The mixture weights πa, πm, and πs are computed as:

[πa, πm, πs] = softmax([log(qat,i), log(q
m
t,i), log(q

s
t,i)]) (14)

We solve the assignment problem using the Hungarian algorithm [15] with the cost matrix C. To handle new trajectories
and false detections, we introduce dummy nodes with a cost threshold τ . If the cost of assigning a detection to any
trajectory exceeds τ , the detection initiates a new trajectory.

3.5 Trajectory Refinement with Temporal Consistency

To improve tracking continuity and reduce identity switches, we introduce temporal consistency constraints that exploit
the smooth dynamics of human motion. We formulate trajectory refinement as an energy minimization problem:

E(T ) =

N∑
i=1

Edata(Ti) + λ1

N∑
i=1

Esmooth(Ti) + λ2

∑
i ̸=j

Einter(Ti, Tj) (15)

where Edata is the data term that measures how well the trajectory fits the detections, Esmooth is the smoothness term that
penalizes non-smooth trajectories, and Einter is the interaction term that penalizes trajectory crossings and overlaps.

The data term is defined as:

Edata(Ti) =
∑
t∈Ti

∥Pt,i − P̂t,i∥2 (16)

where Pt,i is the observed position at time t and P̂t,i is the refined position.

The smoothness term is defined as:

Esmooth(Ti) =
∑
t∈Ti

∥P̂t,i − 2P̂t−1,i + P̂t−2,i∥2 (17)

This term penalizes acceleration, encouraging smooth trajectories.

The interaction term is defined as:

Einter(Ti, Tj) =
∑

t∈Ti∩Tj

exp

(
−∥P̂t,i − P̂t,j∥2

2σ2

)
(18)

This term penalizes trajectories that are too close to each other, helping to resolve identity switches.

We minimize the energy function using gradient descent with momentum:

P̂
(k+1)
t,i = P̂

(k)
t,i − α∇E(P̂

(k)
t,i ) + µ(P̂

(k)
t,i − P̂

(k−1)
t,i ) (19)

where α is the learning rate and µ is the momentum coefficient.
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4 Experimental Results

4.1 Datasets

We evaluate our approach on three public multi-camera tracking datasets:

1. WILDTRACK [16]: A 7-camera dataset capturing a pedestrian plaza with challenging occlusions and crowded
scenes. It contains 400 frames of synchronized videos with calibrated cameras and annotated ground truth.

2. CAMPUS [5]: A 3-camera dataset of a university campus with moderate crowd density. It contains 1500
frames with calibrated cameras and annotated ground truth.

3. PETS2009 [17]: A benchmark dataset for multi-camera tracking with varying crowd densities. We use the
S2.L1 scenario with 7 cameras.

4.2 Evaluation Metrics

We use the standard CLEAR MOT metrics [18] for evaluation:

1. Multiple Object Tracking Accuracy (MOTA): A comprehensive metric that combines false positives, false
negatives, and identity switches.

2. Multiple Object Tracking Precision (MOTP): The average distance between the predicted positions and the
ground truth positions.

3. Identity F1 Score (IDF1): A measure of how well the tracker identifies the correct targets, considering both
precision and recall.

4. Mostly Tracked (MT): The percentage of ground truth trajectories that are covered by the tracker for at least
80% of their length.

5. Mostly Lost (ML): The percentage of ground truth trajectories that are covered by the tracker for less than
20% of their length.

6. False Positives (FP): The number of false detections.

7. False Negatives (FN): The number of missed detections.

8. Identity Switches (IDS): The number of times the tracker incorrectly changes the identity of a target.

4.3 Implementation Details

We implement our approach using PyTorch. For person detection, we use Faster R-CNN with a ResNet-50 backbone
pre-trained on MS COCO and fine-tuned on each dataset. For appearance feature extraction, we use a ResNet-50 model
pre-trained on Market-1501 [19] and DukeMTMC-reID [20].

The adaptive feature fusion network consists of a two-layer perceptron with 64 hidden units and ReLU activation. We
train the network using the Adam optimizer with a learning rate of 0.001 and a batch size of 32.

For trajectory refinement, we use gradient descent with a learning rate of 0.05 and a momentum coefficient of 0.9. We
set the hyperparameters λ1 = 0.1 and λ2 = 0.01 based on validation performance.

We perform data augmentation during training, including random horizontal flipping, random cropping, and color
jittering. We train our model for 50 epochs on each dataset, with early stopping based on validation performance.

4.4 Results

Table 1 shows the overall performance of our approach compared to state-of-the-art methods on the three datasets.

Our approach achieves the best performance on all three datasets across all metrics. On the WILDTRACK dataset,
which features challenging crowd scenarios, OmniTrack achieves a MOTA score of 76.8%, outperforming the previous
state-of-the-art method by 2.6%. The improvements are particularly notable in terms of identity switches (IDS), where
our method reduces the number by 10.5% compared to GST [8].

On the CAMPUS dataset, OmniTrack achieves a MOTA score of 68.3%, representing a 3.1% improvement over the
previous best method. The improvements are consistent across all metrics, with notable reductions in false positives and
identity switches.
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Table 1: Comparison with state-of-the-art methods on multiple datasets
Dataset Method MOTA↑ MOTP↑ IDF1↑ MT↑ ML↓ FP↓ IDS↓

WILDTRACK

DMCT [5] 70.2 75.6 68.9 57.3 14.2 1238 95
MFMC [6] 73.5 76.2 71.4 60.8 12.7 1173 82
GST [8] 74.2 77.1 72.6 62.1 11.9 1092 76
OmniTrack (Ours) 76.8 78.4 74.5 64.7 10.5 1021 68

CAMPUS

DMCT [5] 61.4 72.3 59.2 48.6 20.3 1746 143
MFMC [6] 64.7 73.5 62.1 51.8 18.7 1627 128
GST [8] 65.2 74.1 63.5 53.6 17.2 1581 119
OmniTrack (Ours) 68.3 75.8 65.7 56.2 16.1 1495 105

PETS2009

DMCT [5] 78.3 79.2 76.4 67.5 10.8 834 62
MFMC [6] 80.6 80.5 78.2 69.3 9.6 791 54
GST [8] 81.9 81.3 79.5 71.2 8.7 752 48
OmniTrack (Ours) 83.7 82.6 81.2 73.8 7.9 721 41

On the PETS2009 dataset, our approach achieves a MOTA score of 83.7%, outperforming GST by 1.8%. The relatively
smaller improvement on this dataset can be attributed to its less crowded nature, which makes it easier for existing
methods to perform well.

Table 2 shows the performance of our approach in different scenarios on the WILDTRACK dataset, categorized by
crowd density.

Table 2: Performance in different scenarios on WILDTRACK dataset
Scenario MOTA↑ MOTP↑ IDF1↑ FP↓ IDS↓

Low density (1-5 people) 85.2 82.5 83.7 187 8
Medium density (6-10 people) 78.6 79.3 76.4 342 21
High density (>10 people) 66.5 73.5 63.4 492 39

As expected, tracking performance decreases as crowd density increases due to more frequent occlusions and interactions.
However, our approach maintains reasonable performance even in high-density scenarios, with a MOTA score of 66.5%.

5 Ablation Studies

We conduct ablation studies to analyze the contribution of each component of our approach. Table 3 shows the results
on the WILDTRACK dataset.

Table 3: Ablation study on the WILDTRACK dataset
Method MOTA↑ MOTP↑ IDF1↑ FP↓ IDS↓

OmniTrack (Full) 76.8 78.4 74.5 1021 68
- Adaptive fusion 74.3 77.2 72.1 1109 81
- Confidence-aware association 73.7 76.8 71.5 1132 87
- Temporal consistency 75.2 77.9 73.2 1054 79
- All components (baseline) 71.8 75.3 69.4 1196 93

Removing the adaptive fusion mechanism results in a 2.5% decrease in MOTA, highlighting the importance of
dynamically adjusting feature weights based on scene conditions. When the confidence-aware association is replaced
with standard association, MOTA decreases by 3.1%, with a notable increase in identity switches. This confirms the
effectiveness of our approach in handling uncertainty during data association.

Removing the temporal consistency constraints reduces MOTA by 1.6%, with a smaller impact compared to the other
components. This suggests that while temporal consistency is beneficial, the adaptive fusion and confidence-aware
association provide more substantial improvements.
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When all components are removed (resulting in our baseline implementation), MOTA decreases by 5.0%, demonstrating
the combined effect of our contributions.

We further analyze the adaptive feature fusion mechanism by examining the average weights assigned to different
features across various scenarios. Table 5 shows the results.

Table 4: Average feature weights in different scenarios
Scenario Appearance Motion Spatial-temporal

Low occlusion 0.58 0.27 0.15
Medium occlusion 0.42 0.38 0.20
High occlusion 0.31 0.46 0.23
Low crowd density 0.53 0.30 0.17
Medium crowd density 0.44 0.36 0.20
High crowd density 0.32 0.43 0.25

The results in Table 5 reveal important insights about our adaptive feature fusion mechanism. In scenarios with
low occlusion, the appearance features receive the highest weight (0.58), as they are most reliable when people are
clearly visible. As occlusion increases, the weight shifts toward motion features (0.46 in high occlusion scenarios) and
spatial-temporal features (0.23 in high occlusion scenarios), which are more robust under occlusion.

Similarly, in low crowd density scenarios, appearance features dominate (0.53), but as crowd density increases, the
weights shift toward motion and spatial-temporal features. This adaptive weighting allows our approach to maintain
robust performance across diverse scenarios by emphasizing the most reliable features in each context.

We also analyze the impact of the number of cameras on tracking performance. Figure 2 shows the MOTA scores with
varying numbers of cameras on the WILDTRACK dataset.

As expected, tracking performance improves with more cameras due to better coverage and reduced occlusions.
Our approach shows a steeper improvement curve compared to baseline methods, demonstrating its effectiveness in
leveraging information from multiple views. With all seven cameras, OmniTrack achieves a MOTA score of 76.8%,
while the performance drops to 66.2% with only three cameras.

To understand the effectiveness of our Confidence-Aware Association (CAA) algorithm, we analyze its performance
under different crowd densities. Table 6 shows the number of identity switches per 100 frames for different association
methods.

Table 5: Average feature weights in different scenarios
Scenario Appearance Motion Spatial-temporal

Low occlusion 0.58 0.27 0.15
Medium occlusion 0.42 0.38 0.20
High occlusion 0.31 0.46 0.23
Low crowd density 0.53 0.30 0.17
Medium crowd density 0.44 0.36 0.20
High crowd density 0.32 0.43 0.25

The results in Table 5 reveal important insights about our adaptive feature fusion mechanism. In scenarios with
low occlusion, the appearance features receive the highest weight (0.58), as they are most reliable when people are
clearly visible. As occlusion increases, the weight shifts toward motion features (0.46 in high occlusion scenarios) and
spatial-temporal features (0.23 in high occlusion scenarios), which are more robust under occlusion.

Similarly, in low crowd density scenarios, appearance features dominate (0.53), but as crowd density increases, the
weights shift toward motion and spatial-temporal features. This adaptive weighting allows our approach to maintain
robust performance across diverse scenarios by emphasizing the most reliable features in each context.

We also analyze the impact of the number of cameras on tracking performance. Figure 2 shows the MOTA scores with
varying numbers of cameras on the WILDTRACK dataset.

As expected, tracking performance improves with more cameras due to better coverage and reduced occlusions.
Our approach shows a steeper improvement curve compared to baseline methods, demonstrating its effectiveness in

8



leveraging information from multiple views. With all seven cameras, OmniTrack achieves a MOTA score of 76.8%,
while the performance drops to 66.2% with only three cameras.

To understand the effectiveness of our Confidence-Aware Association (CAA) algorithm, we analyze its performance
under different crowd densities. Table 6 shows the number of identity switches per 100 frames for different association
methods.

Table 6: Identity switches per 100 frames for different association methods under varying crowd densities
Method Low density Medium density High density

Hungarian with fixed weights 2.3 5.1 10.9
Hungarian with adaptive weights 1.8 4.3 8.6
Confidence-Aware Association (Ours) 1.1 3.2 6.1

The results demonstrate that our CAA algorithm significantly reduces identity switches, especially in high-density
scenarios. Compared to the standard Hungarian algorithm with fixed weights, CAA reduces identity switches by 52.2%
in low-density scenarios and 44.0% in high-density scenarios. This improvement can be attributed to the explicit
modeling of uncertainty in the association process and the adaptive mixture weights for different feature types.

6 Discussion

The experimental results highlight several key strengths of our approach. First, the adaptive feature fusion mechanism
effectively adjusts to varying scene conditions, maintaining robust performance across different crowd densities and
occlusion levels. This adaptivity is particularly valuable in real-world scenarios where conditions can change rapidly.

Second, the Confidence-Aware Association algorithm significantly reduces identity switches by explicitly modeling
uncertainty and using it to guide the data association process. This is crucial for maintaining consistent trajectories in
crowded environments where standard association methods often fail.

Third, the temporal consistency constraints provide additional refinement that improves tracking continuity, reducing
fragmented trajectories and further enhancing overall performance.

Despite these strengths, our approach has several limitations that warrant further investigation. First, the current
implementation relies on pre-trained detectors and feature extractors, which may not be optimized for the specific
characteristics of each camera view. End-to-end training of the entire pipeline could potentially improve performance
but would require more extensive computational resources.

Second, while our method adapts to different crowd densities, extreme crowding still poses significant challenges, as
indicated by the performance drop in high-density scenarios. Incorporating additional cues such as human pose or depth
information could potentially improve robustness in these cases.

Third, our approach assumes calibrated cameras with overlapping fields of view. Extending the method to handle
uncalibrated cameras or limited overlap would broaden its applicability to more general surveillance scenarios.

7 Conclusion

In this paper, we presented OmniTrack, a novel framework for multi-camera human tracking in crowded environments.
Our approach leverages adaptive feature fusion and temporal consistency constraints to improve tracking performance,
particularly in challenging scenarios with occlusions and similar appearances. The key innovations include an adaptive
feature fusion mechanism that dynamically adjusts feature weights based on their reliability, a Confidence-Aware
Association algorithm that explicitly models tracking uncertainty, and temporal consistency constraints that exploit the
smooth dynamics of human motion.

Extensive experiments on three public datasets demonstrate that our approach achieves comparable or superior
performance to state-of-the-art methods, with notable improvements in crowded scenes with frequent occlusions. The
ablation studies confirm the contribution of each component to the overall performance and provide insights into their
effectiveness in different scenarios.

Future work will explore several directions to address the limitations discussed above. First, we plan to investigate
end-to-end training of the entire pipeline to optimize detection and feature extraction for specific camera views. Second,
we will explore the integration of additional cues such as human pose and depth information to improve robustness in
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extremely crowded scenes. Third, we will extend our approach to handle uncalibrated cameras and limited overlap to
broaden its applicability.

In summary, OmniTrack provides a robust solution for multi-camera human tracking in crowded environments, with
adaptive features that make it suitable for a wide range of real-world applications. The demonstrated improvements over
existing methods highlight the effectiveness of our approach and its potential impact on surveillance, sports analytics,
and other domains that rely on accurate human tracking.
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